딥러닝 개발환경은 결국 Nvidia GPU 그래픽 카드를 구매하여 마더보드에 장착을 한 후에 이를 구동하기 위한 1) 드라이버 2) C 컴파일러 3) CUDA 4) 딥러닝 프레임워크를 순차적으로 설치하여 딥러닝 응용프로그램 개발에 적용하는 것으로 간략히 정리할 수 있다.
구글 Colab을 사용하는 경우 상기 1~4번 과정이 이미 클라우드 상에 구현되어 있으니 신경을 쓰지 않아도 되지만 극단적으로 연구실/집/회사에 자체 딥러닝 서버 혹은 워크스테이션을 구축한 경우 상기 1~4번 뿐만 아니라 전기세(?)도 신경을 써서 관리해야 한다.
드라이버는 하드웨어와 운영체제를 연결해주는 소프트웨어다. 예를 들어 GPU 그래픽 카드로 Nvidia Geforce GTX 1050 그래픽 카드 마더보드에 장착했다고 가정하면 운영체제(윈도우 10)에서 인식하여 활용할 수 있도록 드라이버 소프트웨어를 설치해줘야 한다.
오래된 GPU는 GPU 드라이버 지원이 중지될 것이 확실하기 때문에 오래된 GPU를 계속해서 사용하고자 하는 경우 GPU 세대별 지원 드라이버 버전을 확인하고 가능하면 최신 GPU 드라이버 버전을 유지한다.
구입한 Nvidia Geforce 그래픽 카드에 매칭되는 드라이버를 GEFORCE® 드라이버 다운로드에서 선택하여 설치한다.
$ nvidia-smi
Sat Jul 9 19:41:41 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.89 Driver Version: 460.89 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 GeForce GTX 1050 WDDM | 00000000:01:00.0 On | N/A |
| 20% 35C P5 N/A / 75W | 1836MiB / 2048MiB | 2% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
Visual Studio를 다운로드 받는 이유는 C 컴파일러를 설치하기 위해 필요한 것이다. Visual Studio IDE를 통해 필요한 개발에 필요한 언어 구성요소를 설치할 수 있다. 예를 들어 .NET, Node.js, 파이썬 등… 하지만 딥러닝을 위해 꼭 필요한 것은 C/C++ 개발 구성요소라 필히 설치하고 너무 낮은 버전 Visual Studio 2015 와 같은 너무 오래된 Visual Studio 버전은 업그레이드 하는 것이 필요하다.
위키백과에 따르면 CUDA(“Compute Unified Device Architecture”, 쿠다)는 그래픽 처리 장치에서 수행하는 알고리즘을 C 프로그래밍 언어를 비롯한 산업 표준 언어를 사용하여 작성할 수 있도록 하는 GPGPU (‘GPU의 범용 연산’, General-Purpose computing on Graphics Processing Units) 기술이다. CUDA는 엔비디아가 개발해오고 있으며 이 아키텍처를 사용하려면 엔비디아 GPU와 특별한 스트림 처리 드라이버가 필요하다.
CUDA는 응용프로그램을 실행하는 부분과 응용프로그램 개발을 지원하는 툴킷으로 구성된다. GPU 하드웨어에 맞춰 CUDA 버전을 맞춰줘야 하드웨어 성능을 최상으로 유지시킬 수 있다.
CUDA 모든 버전이 Nvidia Geforce 그래픽 카드에 맞지 않기 때문에 예를 들어 GTX 1050을 소유하고 있다면 GTX 1050 제품이 속한 아키텍처가 “파스칼(Pascal)” 이기 때문에 CUDA 8 이후 버전을 CUDA Toolkit Archive 에서 찾아 GTX 1050을 가장 잘 지원하는 하드웨어 CUDA 버전을 다운로드해서 설치한다.
Arnon Shimoni (27/10/2020), “Matching CUDA arch and CUDA gencode for various NVIDIA architectures”
GTX 1050에 적합한 CUDA 버전으로 8버전이후 가장 최신 버진이 아닌
11.2를 선택한다. 가장 최신 버전을 다운로드 받아 설치하면 안
됩니다
$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Mon_Nov_30_19:15:10_Pacific_Standard_Time_2020
Cuda compilation tools, release 11.2, V11.2.67
Build cuda_11.2.r11.2/compiler.29373293_0
GTX 1050 그래픽 카드 CUDA 버전을 확정(11.2) 했기 때문에 cuDNN 딥러닝 GPU 가속 라이브러리를 cuDNN Archive 에서 다운로드 받아 복사하여 붙여넣기를 한다.
cudnn-windows-x86_64-8.4.0.27_cuda11.6-archive.zip
파일명을 갖기 때문에 압축을 풀어 bin\
,
include\
, lib\
폴더에 담긴 모든 파일을
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\
폴더에 다음과 같이 복사하여 붙여넣기한다.
이미지 출처: 5. Installing cuDNN
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\
폴더에 담긴 CUDA 정보를 윈도우즈 환경으로 등록한다.
현 시점에서 가장 인기있는 딥러닝 프레임워크는 텐서플로우와 파이토치다.
먼저 CUDA (11.2), cuDNN (8.1)에 해당되는 파이썬 버전과 tensorflow
버전은 tensorflow_gpu-2.7.0
으로 확인되어 이를 설치한다.
tensorflow
pip3 uninstall tensorflow
pip3 install 'tensorflow-gpu==2.7.0'
pytorch
conda install pytorch torchvision cudatoolkit=11.2 -c pytorch
import tensorflow as tf
print(tf.config.list_physical_devices('GPU'))
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
print(tf.test.is_built_with_cuda)
<function is_built_with_cuda at 0x000001D33F9E9280>
print(tf.test.gpu_device_name())
/device:GPU:0
print(tf.config.get_visible_devices())
[PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU'), PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
import torch
= torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
device print('Using device:', device)
# Using device: cuda
#Additional Info when using cuda
if device.type == 'cuda':
print(torch.cuda.get_device_name(0))
print('Memory Usage:')
print('Allocated:', round(torch.cuda.memory_allocated(0)/1024**3,1), 'GB')
print('Cached: ', round(torch.cuda.memory_reserved(0)/1024**3,1), 'GB')
# GeForce GTX 1050
# Memory Usage:
# Allocated: 0.0 GB
# Cached: 0.0 GB
GPU를 사용해서 딥러닝 모형을 만들면 CPU 대비 얼마나 효과가 있을까? 이 문제에 답을 구하기 위해 MNIST 데이터셋을 Keras로 작성된 코드를 다음 하드웨어를 갖춘 컴퓨터로 확인해보자.
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import keras as k
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D, BatchNormalization
from keras.optimizers import SGD, Adam
from keras.models import load_model
from keras import backend as K
import os
"TF_CPP_MIN_LOG_LEVEL"] = "2"
os.environ[import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
= tf.config.list_physical_devices("GPU")
physical_devices 0], True)
tf.config.experimental.set_memory_growth(physical_devices[
#data preprocessing
= mnist.load_data()
(x_train, y_train), (x_test, y_test) = 28,28
img_rows, img_cols = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_train = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
x_test = (img_rows, img_cols, 1)
input_shape =x_test.astype('float32')
x_test=x_train.astype('float32')
x_train=np.mean(x_train)
mean=np.std(x_train)
std= (x_test-mean)/std
x_test = (x_train-mean)/std
x_train
#labels
=10
num_classes= k.utils.to_categorical(y_train, num_classes)
y_train = k.utils.to_categorical(y_test, num_classes) y_test
#build model
=32
num_filter=512
num_dense=0.7
drop_dense='relu'
ac=0.001
learningrate
= Sequential()
model
3, 3), activation=ac, input_shape=(28, 28, 1),padding='same'))
model.add(Conv2D(num_filter, (=-1))
model.add(BatchNormalization(axis3, 3), activation=ac,padding='same'))
model.add(Conv2D(num_filter, (=-1))
model.add(BatchNormalization(axis=(2, 2))) # reduces to 14x14x32
model.add(MaxPooling2D(pool_size
2*num_filter, (3, 3), activation=ac,padding='same'))
model.add(Conv2D(=-1))
model.add(BatchNormalization(axis2*num_filter, (3, 3), activation=ac,padding='same'))
model.add(Conv2D(=-1))
model.add(BatchNormalization(axis=(2, 2))) # reduces to 7x7x64 = 3136 neurons
model.add(MaxPooling2D(pool_size
model.add(Flatten()) =ac))
model.add(Dense(num_dense, activation
model.add(BatchNormalization())
model.add(Dropout(drop_dense))10, activation='softmax'))
model.add(Dense(
=Adam(learning_rate=learningrate, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
admcompile(loss='categorical_crossentropy', metrics=['accuracy'],optimizer=adm)
model.
# Allocator (GPU_0_bfc) ran out of memory trying to allocate 오류
# gpus = tf.config.experimental.list_physical_devices('GPU')
# if gpus:
# # Restrict TensorFlow to only allocate 1GB of memory on the first GPU
# try:
# tf.config.experimental.set_virtual_device_configuration(gpus[0],
# [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=1024)])
# logical_gpus = tf.config.experimental.list_logical_devices('GPU')
# print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
# except RuntimeError as e:
# # Virtual devices must be set before GPUs have been initialized
# print(e)
# with GPU (the default in my setup)
for i in range(7):
=8*2**i
kprint("batch size "+str(k))
=k, epochs=1, validation_data=(x_test, y_test)) model.fit(x_train, y_train, batch_size
batch size 32
1/1875 [..............................] - ETA: 40:04 - loss: 0.0340 - accuracy: 1.0000
3/1875 [..............................] - ETA: 1:25 - loss: 0.0783 - accuracy: 0.9792
5/1875 [..............................] - ETA: 1:33 - loss: 0.0812 - accuracy: 0.9812
7/1875 [..............................] - ETA: 1:30 - loss: 0.0768 - accuracy: 0.9777
9/1875 [..............................] - ETA: 1:34 - loss: 0.0655 - accuracy: 0.9792
11/1875 [..............................] - ETA: 1:31 - loss: 0.0569 - accuracy: 0.9801
13/1875 [..............................] - ETA: 1:31 - loss: 0.0492 - accuracy: 0.9832
15/1875 [..............................] - ETA: 1:31 - loss: 0.0438 - accuracy: 0.9854
17/1875 [..............................] - ETA: 1:30 - loss: 0.0420 - accuracy: 0.9853
18/1875 [..............................] - ETA: 1:32 - loss: 0.0400 - accuracy: 0.9861
20/1875 [..............................] - ETA: 1:31 - loss: 0.0415 - accuracy: 0.9859
22/1875 [..............................] - ETA: 1:32 - loss: 0.0455 - accuracy: 0.9830
24/1875 [..............................] - ETA: 1:31 - loss: 0.0540 - accuracy: 0.9831
26/1875 [..............................] - ETA: 1:32 - loss: 0.0556 - accuracy: 0.9820
27/1875 [..............................] - ETA: 1:33 - loss: 0.0540 - accuracy: 0.9826
29/1875 [..............................] - ETA: 1:33 - loss: 0.0517 - accuracy: 0.9828
30/1875 [..............................] - ETA: 1:34 - loss: 0.0537 - accuracy: 0.9823
32/1875 [..............................] - ETA: 1:33 - loss: 0.0537 - accuracy: 0.9824
34/1875 [..............................] - ETA: 1:33 - loss: 0.0565 - accuracy: 0.9825
36/1875 [..............................] - ETA: 1:32 - loss: 0.0563 - accuracy: 0.9818
38/1875 [..............................] - ETA: 1:32 - loss: 0.0550 - accuracy: 0.9819
39/1875 [..............................] - ETA: 1:32 - loss: 0.0561 - accuracy: 0.9816
41/1875 [..............................] - ETA: 1:32 - loss: 0.0556 - accuracy: 0.9817
43/1875 [..............................] - ETA: 1:31 - loss: 0.0541 - accuracy: 0.9826
45/1875 [..............................] - ETA: 1:31 - loss: 0.0518 - accuracy: 0.9833
47/1875 [..............................] - ETA: 1:30 - loss: 0.0517 - accuracy: 0.9827
49/1875 [..............................] - ETA: 1:30 - loss: 0.0518 - accuracy: 0.9828
51/1875 [..............................] - ETA: 1:30 - loss: 0.0501 - accuracy: 0.9835
52/1875 [..............................] - ETA: 1:30 - loss: 0.0493 - accuracy: 0.9838
53/1875 [..............................] - ETA: 1:31 - loss: 0.0485 - accuracy: 0.9841
55/1875 [..............................] - ETA: 1:30 - loss: 0.0517 - accuracy: 0.9841
57/1875 [..............................] - ETA: 1:30 - loss: 0.0550 - accuracy: 0.9830
59/1875 [..............................] - ETA: 1:30 - loss: 0.0540 - accuracy: 0.9831
60/1875 [..............................] - ETA: 1:30 - loss: 0.0557 - accuracy: 0.9823
62/1875 [..............................] - ETA: 1:30 - loss: 0.0555 - accuracy: 0.9824
64/1875 [>.............................] - ETA: 1:29 - loss: 0.0542 - accuracy: 0.9829
66/1875 [>.............................] - ETA: 1:29 - loss: 0.0547 - accuracy: 0.9830
67/1875 [>.............................] - ETA: 1:29 - loss: 0.0551 - accuracy: 0.9827
69/1875 [>.............................] - ETA: 1:30 - loss: 0.0570 - accuracy: 0.9823
71/1875 [>.............................] - ETA: 1:29 - loss: 0.0581 - accuracy: 0.9824
73/1875 [>.............................] - ETA: 1:30 - loss: 0.0596 - accuracy: 0.9820
75/1875 [>.............................] - ETA: 1:29 - loss: 0.0589 - accuracy: 0.9821
77/1875 [>.............................] - ETA: 1:29 - loss: 0.0587 - accuracy: 0.9821
79/1875 [>.............................] - ETA: 1:29 - loss: 0.0574 - accuracy: 0.9826
81/1875 [>.............................] - ETA: 1:30 - loss: 0.0564 - accuracy: 0.9826
82/1875 [>.............................] - ETA: 1:30 - loss: 0.0560 - accuracy: 0.9829
84/1875 [>.............................] - ETA: 1:29 - loss: 0.0561 - accuracy: 0.9825
85/1875 [>.............................] - ETA: 1:29 - loss: 0.0559 - accuracy: 0.9824
87/1875 [>.............................] - ETA: 1:29 - loss: 0.0548 - accuracy: 0.9828
89/1875 [>.............................] - ETA: 1:30 - loss: 0.0538 - accuracy: 0.9831
91/1875 [>.............................] - ETA: 1:29 - loss: 0.0554 - accuracy: 0.9832
92/1875 [>.............................] - ETA: 1:29 - loss: 0.0551 - accuracy: 0.9830
93/1875 [>.............................] - ETA: 1:30 - loss: 0.0546 - accuracy: 0.9832
94/1875 [>.............................] - ETA: 1:30 - loss: 0.0580 - accuracy: 0.9820
96/1875 [>.............................] - ETA: 1:30 - loss: 0.0570 - accuracy: 0.9824
98/1875 [>.............................] - ETA: 1:29 - loss: 0.0560 - accuracy: 0.9828
100/1875 [>.............................] - ETA: 1:29 - loss: 0.0559 - accuracy: 0.9825
101/1875 [>.............................] - ETA: 1:30 - loss: 0.0554 - accuracy: 0.9827
102/1875 [>.............................] - ETA: 1:30 - loss: 0.0555 - accuracy: 0.9825
103/1875 [>.............................] - ETA: 1:30 - loss: 0.0552 - accuracy: 0.9824
104/1875 [>.............................] - ETA: 1:30 - loss: 0.0548 - accuracy: 0.9826
105/1875 [>.............................] - ETA: 1:30 - loss: 0.0545 - accuracy: 0.9827
106/1875 [>.............................] - ETA: 1:30 - loss: 0.0545 - accuracy: 0.9826
107/1875 [>.............................] - ETA: 1:31 - loss: 0.0545 - accuracy: 0.9825
109/1875 [>.............................] - ETA: 1:30 - loss: 0.0547 - accuracy: 0.9822
110/1875 [>.............................] - ETA: 1:30 - loss: 0.0547 - accuracy: 0.9821
112/1875 [>.............................] - ETA: 1:31 - loss: 0.0553 - accuracy: 0.9821
114/1875 [>.............................] - ETA: 1:30 - loss: 0.0553 - accuracy: 0.9822
116/1875 [>.............................] - ETA: 1:30 - loss: 0.0550 - accuracy: 0.9822
118/1875 [>.............................] - ETA: 1:30 - loss: 0.0543 - accuracy: 0.9823
119/1875 [>.............................] - ETA: 1:30 - loss: 0.0540 - accuracy: 0.9824
120/1875 [>.............................] - ETA: 1:30 - loss: 0.0537 - accuracy: 0.9826
122/1875 [>.............................] - ETA: 1:30 - loss: 0.0554 - accuracy: 0.9826
123/1875 [>.............................] - ETA: 1:30 - loss: 0.0550 - accuracy: 0.9827
124/1875 [>.............................] - ETA: 1:30 - loss: 0.0552 - accuracy: 0.9826
125/1875 [=>............................] - ETA: 1:30 - loss: 0.0557 - accuracy: 0.9825
126/1875 [=>............................] - ETA: 1:30 - loss: 0.0570 - accuracy: 0.9819
127/1875 [=>............................] - ETA: 1:31 - loss: 0.0566 - accuracy: 0.9820
128/1875 [=>............................] - ETA: 1:31 - loss: 0.0562 - accuracy: 0.9822
129/1875 [=>............................] - ETA: 1:31 - loss: 0.0559 - accuracy: 0.9823
130/1875 [=>............................] - ETA: 1:31 - loss: 0.0556 - accuracy: 0.9825
131/1875 [=>............................] - ETA: 1:31 - loss: 0.0552 - accuracy: 0.9826
133/1875 [=>............................] - ETA: 1:30 - loss: 0.0570 - accuracy: 0.9821
134/1875 [=>............................] - ETA: 1:31 - loss: 0.0568 - accuracy: 0.9823
135/1875 [=>............................] - ETA: 1:31 - loss: 0.0566 - accuracy: 0.9822
136/1875 [=>............................] - ETA: 1:31 - loss: 0.0562 - accuracy: 0.9823
137/1875 [=>............................] - ETA: 1:32 - loss: 0.0559 - accuracy: 0.9824
138/1875 [=>............................] - ETA: 1:32 - loss: 0.0555 - accuracy: 0.9826
139/1875 [=>............................] - ETA: 1:32 - loss: 0.0552 - accuracy: 0.9827
140/1875 [=>............................] - ETA: 1:33 - loss: 0.0566 - accuracy: 0.9826
141/1875 [=>............................] - ETA: 1:33 - loss: 0.0563 - accuracy: 0.9827
142/1875 [=>............................] - ETA: 1:33 - loss: 0.0560 - accuracy: 0.9828
143/1875 [=>............................] - ETA: 1:33 - loss: 0.0564 - accuracy: 0.9825
144/1875 [=>............................] - ETA: 1:33 - loss: 0.0566 - accuracy: 0.9824
145/1875 [=>............................] - ETA: 1:35 - loss: 0.0569 - accuracy: 0.9821
146/1875 [=>............................] - ETA: 1:35 - loss: 0.0568 - accuracy: 0.9822
147/1875 [=>............................] - ETA: 1:35 - loss: 0.0577 - accuracy: 0.9819
148/1875 [=>............................] - ETA: 1:36 - loss: 0.0573 - accuracy: 0.9821
149/1875 [=>............................] - ETA: 1:36 - loss: 0.0580 - accuracy: 0.9820
150/1875 [=>............................] - ETA: 1:36 - loss: 0.0576 - accuracy: 0.9821
151/1875 [=>............................] - ETA: 1:36 - loss: 0.0573 - accuracy: 0.9822
152/1875 [=>............................] - ETA: 1:37 - loss: 0.0575 - accuracy: 0.9821
153/1875 [=>............................] - ETA: 1:37 - loss: 0.0572 - accuracy: 0.9822
154/1875 [=>............................] - ETA: 1:37 - loss: 0.0575 - accuracy: 0.9821
155/1875 [=>............................] - ETA: 1:37 - loss: 0.0572 - accuracy: 0.9823
156/1875 [=>............................] - ETA: 1:37 - loss: 0.0570 - accuracy: 0.9824
157/1875 [=>............................] - ETA: 1:37 - loss: 0.0567 - accuracy: 0.9825
158/1875 [=>............................] - ETA: 1:37 - loss: 0.0564 - accuracy: 0.9826
159/1875 [=>............................] - ETA: 1:37 - loss: 0.0569 - accuracy: 0.9825
160/1875 [=>............................] - ETA: 1:37 - loss: 0.0566 - accuracy: 0.9826
161/1875 [=>............................] - ETA: 1:37 - loss: 0.0563 - accuracy: 0.9827
162/1875 [=>............................] - ETA: 1:37 - loss: 0.0566 - accuracy: 0.9826
163/1875 [=>............................] - ETA: 1:37 - loss: 0.0563 - accuracy: 0.9827
165/1875 [=>............................] - ETA: 1:37 - loss: 0.0560 - accuracy: 0.9828
166/1875 [=>............................] - ETA: 1:37 - loss: 0.0558 - accuracy: 0.9829
168/1875 [=>............................] - ETA: 1:37 - loss: 0.0565 - accuracy: 0.9821
169/1875 [=>............................] - ETA: 1:37 - loss: 0.0566 - accuracy: 0.9821
170/1875 [=>............................] - ETA: 1:37 - loss: 0.0563 - accuracy: 0.9822
171/1875 [=>............................] - ETA: 1:37 - loss: 0.0560 - accuracy: 0.9823
173/1875 [=>............................] - ETA: 1:37 - loss: 0.0554 - accuracy: 0.9825
175/1875 [=>............................] - ETA: 1:37 - loss: 0.0548 - accuracy: 0.9827
177/1875 [=>............................] - ETA: 1:37 - loss: 0.0550 - accuracy: 0.9827
179/1875 [=>............................] - ETA: 1:37 - loss: 0.0546 - accuracy: 0.9829
181/1875 [=>............................] - ETA: 1:36 - loss: 0.0541 - accuracy: 0.9831
183/1875 [=>............................] - ETA: 1:36 - loss: 0.0538 - accuracy: 0.9831
184/1875 [=>............................] - ETA: 1:36 - loss: 0.0536 - accuracy: 0.9832
185/1875 [=>............................] - ETA: 1:36 - loss: 0.0535 - accuracy: 0.9831
186/1875 [=>............................] - ETA: 1:36 - loss: 0.0533 - accuracy: 0.9832
188/1875 [==>...........................] - ETA: 1:36 - loss: 0.0531 - accuracy: 0.9832
189/1875 [==>...........................] - ETA: 1:36 - loss: 0.0528 - accuracy: 0.9833
190/1875 [==>...........................] - ETA: 1:36 - loss: 0.0526 - accuracy: 0.9834
191/1875 [==>...........................] - ETA: 1:36 - loss: 0.0524 - accuracy: 0.9835
192/1875 [==>...........................] - ETA: 1:36 - loss: 0.0521 - accuracy: 0.9836
194/1875 [==>...........................] - ETA: 1:36 - loss: 0.0533 - accuracy: 0.9834
196/1875 [==>...........................] - ETA: 1:36 - loss: 0.0528 - accuracy: 0.9836
198/1875 [==>...........................] - ETA: 1:35 - loss: 0.0528 - accuracy: 0.9836
199/1875 [==>...........................] - ETA: 1:35 - loss: 0.0526 - accuracy: 0.9837
201/1875 [==>...........................] - ETA: 1:35 - loss: 0.0524 - accuracy: 0.9837
203/1875 [==>...........................] - ETA: 1:35 - loss: 0.0520 - accuracy: 0.9838
204/1875 [==>...........................] - ETA: 1:36 - loss: 0.0517 - accuracy: 0.9839
208/1875 [==>...........................] - ETA: 1:34 - loss: 0.0511 - accuracy: 0.9842
212/1875 [==>...........................] - ETA: 1:32 - loss: 0.0504 - accuracy: 0.9844
217/1875 [==>...........................] - ETA: 1:31 - loss: 0.0499 - accuracy: 0.9843
221/1875 [==>...........................] - ETA: 1:29 - loss: 0.0492 - accuracy: 0.9846
225/1875 [==>...........................] - ETA: 1:28 - loss: 0.0486 - accuracy: 0.9847
229/1875 [==>...........................] - ETA: 1:27 - loss: 0.0486 - accuracy: 0.9847
231/1875 [==>...........................] - ETA: 1:26 - loss: 0.0482 - accuracy: 0.9848
236/1875 [==>...........................] - ETA: 1:25 - loss: 0.0481 - accuracy: 0.9850
241/1875 [==>...........................] - ETA: 1:23 - loss: 0.0483 - accuracy: 0.9852
244/1875 [==>...........................] - ETA: 1:22 - loss: 0.0479 - accuracy: 0.9853
248/1875 [==>...........................] - ETA: 1:21 - loss: 0.0473 - accuracy: 0.9855
252/1875 [===>..........................] - ETA: 1:20 - loss: 0.0487 - accuracy: 0.9852
256/1875 [===>..........................] - ETA: 1:19 - loss: 0.0481 - accuracy: 0.9855
258/1875 [===>..........................] - ETA: 1:18 - loss: 0.0484 - accuracy: 0.9855
262/1875 [===>..........................] - ETA: 1:17 - loss: 0.0480 - accuracy: 0.9854
266/1875 [===>..........................] - ETA: 1:16 - loss: 0.0478 - accuracy: 0.9854
270/1875 [===>..........................] - ETA: 1:15 - loss: 0.0473 - accuracy: 0.9855
273/1875 [===>..........................] - ETA: 1:15 - loss: 0.0472 - accuracy: 0.9855
277/1875 [===>..........................] - ETA: 1:14 - loss: 0.0471 - accuracy: 0.9856
281/1875 [===>..........................] - ETA: 1:13 - loss: 0.0471 - accuracy: 0.9855
285/1875 [===>..........................] - ETA: 1:12 - loss: 0.0467 - accuracy: 0.9857
289/1875 [===>..........................] - ETA: 1:11 - loss: 0.0469 - accuracy: 0.9858
293/1875 [===>..........................] - ETA: 1:10 - loss: 0.0472 - accuracy: 0.9858
297/1875 [===>..........................] - ETA: 1:09 - loss: 0.0475 - accuracy: 0.9857
300/1875 [===>..........................] - ETA: 1:09 - loss: 0.0476 - accuracy: 0.9856
304/1875 [===>..........................] - ETA: 1:08 - loss: 0.0472 - accuracy: 0.9856
308/1875 [===>..........................] - ETA: 1:07 - loss: 0.0468 - accuracy: 0.9857
312/1875 [===>..........................] - ETA: 1:06 - loss: 0.0464 - accuracy: 0.9859
314/1875 [====>.........................] - ETA: 1:06 - loss: 0.0464 - accuracy: 0.9858
317/1875 [====>.........................] - ETA: 1:06 - loss: 0.0468 - accuracy: 0.9858
321/1875 [====>.........................] - ETA: 1:05 - loss: 0.0470 - accuracy: 0.9859
325/1875 [====>.........................] - ETA: 1:04 - loss: 0.0471 - accuracy: 0.9857
328/1875 [====>.........................] - ETA: 1:04 - loss: 0.0474 - accuracy: 0.9857
332/1875 [====>.........................] - ETA: 1:03 - loss: 0.0474 - accuracy: 0.9857
336/1875 [====>.........................] - ETA: 1:02 - loss: 0.0472 - accuracy: 0.9858
340/1875 [====>.........................] - ETA: 1:02 - loss: 0.0473 - accuracy: 0.9858
344/1875 [====>.........................] - ETA: 1:01 - loss: 0.0471 - accuracy: 0.9859
348/1875 [====>.........................] - ETA: 1:01 - loss: 0.0467 - accuracy: 0.9861
352/1875 [====>.........................] - ETA: 1:00 - loss: 0.0462 - accuracy: 0.9862
355/1875 [====>.........................] - ETA: 1:00 - loss: 0.0460 - accuracy: 0.9863
359/1875 [====>.........................] - ETA: 59s - loss: 0.0456 - accuracy: 0.9863
363/1875 [====>.........................] - ETA: 58s - loss: 0.0456 - accuracy: 0.9864
367/1875 [====>.........................] - ETA: 58s - loss: 0.0452 - accuracy: 0.9865
368/1875 [====>.........................] - ETA: 58s - loss: 0.0451 - accuracy: 0.9865
371/1875 [====>.........................] - ETA: 58s - loss: 0.0451 - accuracy: 0.9865
375/1875 [=====>........................] - ETA: 57s - loss: 0.0451 - accuracy: 0.9865
379/1875 [=====>........................] - ETA: 57s - loss: 0.0450 - accuracy: 0.9865
384/1875 [=====>........................] - ETA: 56s - loss: 0.0451 - accuracy: 0.9865
388/1875 [=====>........................] - ETA: 56s - loss: 0.0454 - accuracy: 0.9864
391/1875 [=====>........................] - ETA: 55s - loss: 0.0451 - accuracy: 0.9865
395/1875 [=====>........................] - ETA: 55s - loss: 0.0449 - accuracy: 0.9866
399/1875 [=====>........................] - ETA: 54s - loss: 0.0448 - accuracy: 0.9865
403/1875 [=====>........................] - ETA: 54s - loss: 0.0448 - accuracy: 0.9865
406/1875 [=====>........................] - ETA: 54s - loss: 0.0446 - accuracy: 0.9865
409/1875 [=====>........................] - ETA: 53s - loss: 0.0446 - accuracy: 0.9865
413/1875 [=====>........................] - ETA: 53s - loss: 0.0444 - accuracy: 0.9865
415/1875 [=====>........................] - ETA: 53s - loss: 0.0450 - accuracy: 0.9863
419/1875 [=====>........................] - ETA: 52s - loss: 0.0449 - accuracy: 0.9863
423/1875 [=====>........................] - ETA: 52s - loss: 0.0446 - accuracy: 0.9864
427/1875 [=====>........................] - ETA: 51s - loss: 0.0445 - accuracy: 0.9865
430/1875 [=====>........................] - ETA: 51s - loss: 0.0443 - accuracy: 0.9865
434/1875 [=====>........................] - ETA: 51s - loss: 0.0447 - accuracy: 0.9863
438/1875 [======>.......................] - ETA: 50s - loss: 0.0449 - accuracy: 0.9863
442/1875 [======>.......................] - ETA: 50s - loss: 0.0446 - accuracy: 0.9864
446/1875 [======>.......................] - ETA: 49s - loss: 0.0444 - accuracy: 0.9864
451/1875 [======>.......................] - ETA: 49s - loss: 0.0448 - accuracy: 0.9863
455/1875 [======>.......................] - ETA: 49s - loss: 0.0446 - accuracy: 0.9864
459/1875 [======>.......................] - ETA: 48s - loss: 0.0443 - accuracy: 0.9865
461/1875 [======>.......................] - ETA: 48s - loss: 0.0442 - accuracy: 0.9866
465/1875 [======>.......................] - ETA: 48s - loss: 0.0441 - accuracy: 0.9866
470/1875 [======>.......................] - ETA: 47s - loss: 0.0445 - accuracy: 0.9865
474/1875 [======>.......................] - ETA: 47s - loss: 0.0446 - accuracy: 0.9866
478/1875 [======>.......................] - ETA: 47s - loss: 0.0446 - accuracy: 0.9865
481/1875 [======>.......................] - ETA: 46s - loss: 0.0444 - accuracy: 0.9865
485/1875 [======>.......................] - ETA: 46s - loss: 0.0446 - accuracy: 0.9864
489/1875 [======>.......................] - ETA: 46s - loss: 0.0444 - accuracy: 0.9865
493/1875 [======>.......................] - ETA: 45s - loss: 0.0442 - accuracy: 0.9866
496/1875 [======>.......................] - ETA: 45s - loss: 0.0440 - accuracy: 0.9866
500/1875 [=======>......................] - ETA: 45s - loss: 0.0438 - accuracy: 0.9867
502/1875 [=======>......................] - ETA: 45s - loss: 0.0440 - accuracy: 0.9867
506/1875 [=======>......................] - ETA: 44s - loss: 0.0441 - accuracy: 0.9867
509/1875 [=======>......................] - ETA: 44s - loss: 0.0441 - accuracy: 0.9867
514/1875 [=======>......................] - ETA: 44s - loss: 0.0439 - accuracy: 0.9867
518/1875 [=======>......................] - ETA: 43s - loss: 0.0440 - accuracy: 0.9867
521/1875 [=======>......................] - ETA: 43s - loss: 0.0439 - accuracy: 0.9868
525/1875 [=======>......................] - ETA: 43s - loss: 0.0441 - accuracy: 0.9868
529/1875 [=======>......................] - ETA: 42s - loss: 0.0439 - accuracy: 0.9868
533/1875 [=======>......................] - ETA: 42s - loss: 0.0437 - accuracy: 0.9869
536/1875 [=======>......................] - ETA: 42s - loss: 0.0436 - accuracy: 0.9868
541/1875 [=======>......................] - ETA: 42s - loss: 0.0440 - accuracy: 0.9868
544/1875 [=======>......................] - ETA: 41s - loss: 0.0438 - accuracy: 0.9869
548/1875 [=======>......................] - ETA: 41s - loss: 0.0436 - accuracy: 0.9870
551/1875 [=======>......................] - ETA: 41s - loss: 0.0433 - accuracy: 0.9871
556/1875 [=======>......................] - ETA: 40s - loss: 0.0431 - accuracy: 0.9871
560/1875 [=======>......................] - ETA: 40s - loss: 0.0429 - accuracy: 0.9872
564/1875 [========>.....................] - ETA: 40s - loss: 0.0427 - accuracy: 0.9873
568/1875 [========>.....................] - ETA: 40s - loss: 0.0425 - accuracy: 0.9873
572/1875 [========>.....................] - ETA: 39s - loss: 0.0422 - accuracy: 0.9874
576/1875 [========>.....................] - ETA: 39s - loss: 0.0420 - accuracy: 0.9875
579/1875 [========>.....................] - ETA: 39s - loss: 0.0419 - accuracy: 0.9875
583/1875 [========>.....................] - ETA: 39s - loss: 0.0418 - accuracy: 0.9875
587/1875 [========>.....................] - ETA: 38s - loss: 0.0416 - accuracy: 0.9876
591/1875 [========>.....................] - ETA: 38s - loss: 0.0414 - accuracy: 0.9877
594/1875 [========>.....................] - ETA: 38s - loss: 0.0413 - accuracy: 0.9877
598/1875 [========>.....................] - ETA: 38s - loss: 0.0412 - accuracy: 0.9877
602/1875 [========>.....................] - ETA: 37s - loss: 0.0413 - accuracy: 0.9877
606/1875 [========>.....................] - ETA: 37s - loss: 0.0415 - accuracy: 0.9877
609/1875 [========>.....................] - ETA: 37s - loss: 0.0413 - accuracy: 0.9877
613/1875 [========>.....................] - ETA: 37s - loss: 0.0411 - accuracy: 0.9878
617/1875 [========>.....................] - ETA: 37s - loss: 0.0409 - accuracy: 0.9878
621/1875 [========>.....................] - ETA: 36s - loss: 0.0407 - accuracy: 0.9879
625/1875 [=========>....................] - ETA: 36s - loss: 0.0411 - accuracy: 0.9878
629/1875 [=========>....................] - ETA: 36s - loss: 0.0410 - accuracy: 0.9878
633/1875 [=========>....................] - ETA: 36s - loss: 0.0408 - accuracy: 0.9879
635/1875 [=========>....................] - ETA: 36s - loss: 0.0408 - accuracy: 0.9879
639/1875 [=========>....................] - ETA: 35s - loss: 0.0407 - accuracy: 0.9880
643/1875 [=========>....................] - ETA: 35s - loss: 0.0408 - accuracy: 0.9879
647/1875 [=========>....................] - ETA: 35s - loss: 0.0406 - accuracy: 0.9880
650/1875 [=========>....................] - ETA: 35s - loss: 0.0405 - accuracy: 0.9880
654/1875 [=========>....................] - ETA: 34s - loss: 0.0405 - accuracy: 0.9880
658/1875 [=========>....................] - ETA: 34s - loss: 0.0406 - accuracy: 0.9880
662/1875 [=========>....................] - ETA: 34s - loss: 0.0406 - accuracy: 0.9880
665/1875 [=========>....................] - ETA: 34s - loss: 0.0408 - accuracy: 0.9879
669/1875 [=========>....................] - ETA: 34s - loss: 0.0408 - accuracy: 0.9879
673/1875 [=========>....................] - ETA: 33s - loss: 0.0407 - accuracy: 0.9879
677/1875 [=========>....................] - ETA: 33s - loss: 0.0407 - accuracy: 0.9878
679/1875 [=========>....................] - ETA: 33s - loss: 0.0406 - accuracy: 0.9878
683/1875 [=========>....................] - ETA: 33s - loss: 0.0409 - accuracy: 0.9877
687/1875 [=========>....................] - ETA: 33s - loss: 0.0408 - accuracy: 0.9877
691/1875 [==========>...................] - ETA: 33s - loss: 0.0408 - accuracy: 0.9876
694/1875 [==========>...................] - ETA: 32s - loss: 0.0407 - accuracy: 0.9877
698/1875 [==========>...................] - ETA: 32s - loss: 0.0405 - accuracy: 0.9877
702/1875 [==========>...................] - ETA: 32s - loss: 0.0408 - accuracy: 0.9877
706/1875 [==========>...................] - ETA: 32s - loss: 0.0407 - accuracy: 0.9877
710/1875 [==========>...................] - ETA: 32s - loss: 0.0407 - accuracy: 0.9877
714/1875 [==========>...................] - ETA: 31s - loss: 0.0407 - accuracy: 0.9877
718/1875 [==========>...................] - ETA: 31s - loss: 0.0407 - accuracy: 0.9877
721/1875 [==========>...................] - ETA: 31s - loss: 0.0406 - accuracy: 0.9877
725/1875 [==========>...................] - ETA: 31s - loss: 0.0407 - accuracy: 0.9877
728/1875 [==========>...................] - ETA: 31s - loss: 0.0407 - accuracy: 0.9877
731/1875 [==========>...................] - ETA: 31s - loss: 0.0405 - accuracy: 0.9877
733/1875 [==========>...................] - ETA: 31s - loss: 0.0405 - accuracy: 0.9878
737/1875 [==========>...................] - ETA: 30s - loss: 0.0403 - accuracy: 0.9878
741/1875 [==========>...................] - ETA: 30s - loss: 0.0405 - accuracy: 0.9878
745/1875 [==========>...................] - ETA: 30s - loss: 0.0404 - accuracy: 0.9879
749/1875 [==========>...................] - ETA: 30s - loss: 0.0404 - accuracy: 0.9879
753/1875 [===========>..................] - ETA: 30s - loss: 0.0402 - accuracy: 0.9879
757/1875 [===========>..................] - ETA: 30s - loss: 0.0401 - accuracy: 0.9880
760/1875 [===========>..................] - ETA: 29s - loss: 0.0400 - accuracy: 0.9880
764/1875 [===========>..................] - ETA: 29s - loss: 0.0399 - accuracy: 0.9880
768/1875 [===========>..................] - ETA: 29s - loss: 0.0398 - accuracy: 0.9881
772/1875 [===========>..................] - ETA: 29s - loss: 0.0399 - accuracy: 0.9881
775/1875 [===========>..................] - ETA: 29s - loss: 0.0399 - accuracy: 0.9880
779/1875 [===========>..................] - ETA: 29s - loss: 0.0401 - accuracy: 0.9879
782/1875 [===========>..................] - ETA: 28s - loss: 0.0400 - accuracy: 0.9880
783/1875 [===========>..................] - ETA: 29s - loss: 0.0399 - accuracy: 0.9880
786/1875 [===========>..................] - ETA: 28s - loss: 0.0399 - accuracy: 0.9880
790/1875 [===========>..................] - ETA: 28s - loss: 0.0400 - accuracy: 0.9880
793/1875 [===========>..................] - ETA: 28s - loss: 0.0401 - accuracy: 0.9879
796/1875 [===========>..................] - ETA: 28s - loss: 0.0401 - accuracy: 0.9879
800/1875 [===========>..................] - ETA: 28s - loss: 0.0400 - accuracy: 0.9879
804/1875 [===========>..................] - ETA: 28s - loss: 0.0399 - accuracy: 0.9879
808/1875 [===========>..................] - ETA: 27s - loss: 0.0398 - accuracy: 0.9880
811/1875 [===========>..................] - ETA: 27s - loss: 0.0397 - accuracy: 0.9880
815/1875 [============>.................] - ETA: 27s - loss: 0.0396 - accuracy: 0.9880
820/1875 [============>.................] - ETA: 27s - loss: 0.0395 - accuracy: 0.9881
824/1875 [============>.................] - ETA: 27s - loss: 0.0393 - accuracy: 0.9881
827/1875 [============>.................] - ETA: 27s - loss: 0.0393 - accuracy: 0.9881
831/1875 [============>.................] - ETA: 27s - loss: 0.0392 - accuracy: 0.9881
835/1875 [============>.................] - ETA: 26s - loss: 0.0391 - accuracy: 0.9881
839/1875 [============>.................] - ETA: 26s - loss: 0.0390 - accuracy: 0.9882
843/1875 [============>.................] - ETA: 26s - loss: 0.0392 - accuracy: 0.9881
848/1875 [============>.................] - ETA: 26s - loss: 0.0391 - accuracy: 0.9881
852/1875 [============>.................] - ETA: 26s - loss: 0.0389 - accuracy: 0.9882
855/1875 [============>.................] - ETA: 26s - loss: 0.0389 - accuracy: 0.9881
859/1875 [============>.................] - ETA: 25s - loss: 0.0389 - accuracy: 0.9881
863/1875 [============>.................] - ETA: 25s - loss: 0.0391 - accuracy: 0.9880
867/1875 [============>.................] - ETA: 25s - loss: 0.0392 - accuracy: 0.9880
870/1875 [============>.................] - ETA: 25s - loss: 0.0392 - accuracy: 0.9880
874/1875 [============>.................] - ETA: 25s - loss: 0.0392 - accuracy: 0.9880
878/1875 [=============>................] - ETA: 25s - loss: 0.0392 - accuracy: 0.9880
882/1875 [=============>................] - ETA: 25s - loss: 0.0393 - accuracy: 0.9879
886/1875 [=============>................] - ETA: 24s - loss: 0.0394 - accuracy: 0.9879
890/1875 [=============>................] - ETA: 24s - loss: 0.0395 - accuracy: 0.9878
894/1875 [=============>................] - ETA: 24s - loss: 0.0397 - accuracy: 0.9877
897/1875 [=============>................] - ETA: 24s - loss: 0.0397 - accuracy: 0.9877
901/1875 [=============>................] - ETA: 24s - loss: 0.0397 - accuracy: 0.9877
905/1875 [=============>................] - ETA: 24s - loss: 0.0399 - accuracy: 0.9876
909/1875 [=============>................] - ETA: 24s - loss: 0.0397 - accuracy: 0.9877
912/1875 [=============>................] - ETA: 23s - loss: 0.0396 - accuracy: 0.9877
915/1875 [=============>................] - ETA: 23s - loss: 0.0397 - accuracy: 0.9877
919/1875 [=============>................] - ETA: 23s - loss: 0.0395 - accuracy: 0.9877
923/1875 [=============>................] - ETA: 23s - loss: 0.0397 - accuracy: 0.9877
926/1875 [=============>................] - ETA: 23s - loss: 0.0395 - accuracy: 0.9877
930/1875 [=============>................] - ETA: 23s - loss: 0.0394 - accuracy: 0.9878
934/1875 [=============>................] - ETA: 23s - loss: 0.0393 - accuracy: 0.9878
938/1875 [==============>...............] - ETA: 23s - loss: 0.0392 - accuracy: 0.9878
942/1875 [==============>...............] - ETA: 22s - loss: 0.0392 - accuracy: 0.9879
946/1875 [==============>...............] - ETA: 22s - loss: 0.0396 - accuracy: 0.9878
950/1875 [==============>...............] - ETA: 22s - loss: 0.0398 - accuracy: 0.9876
953/1875 [==============>...............] - ETA: 22s - loss: 0.0397 - accuracy: 0.9876
957/1875 [==============>...............] - ETA: 22s - loss: 0.0399 - accuracy: 0.9876
961/1875 [==============>...............] - ETA: 22s - loss: 0.0398 - accuracy: 0.9876
965/1875 [==============>...............] - ETA: 22s - loss: 0.0400 - accuracy: 0.9876
968/1875 [==============>...............] - ETA: 22s - loss: 0.0404 - accuracy: 0.9875
972/1875 [==============>...............] - ETA: 21s - loss: 0.0402 - accuracy: 0.9876
976/1875 [==============>...............] - ETA: 21s - loss: 0.0402 - accuracy: 0.9875
980/1875 [==============>...............] - ETA: 21s - loss: 0.0404 - accuracy: 0.9875
984/1875 [==============>...............] - ETA: 21s - loss: 0.0404 - accuracy: 0.9875
988/1875 [==============>...............] - ETA: 21s - loss: 0.0407 - accuracy: 0.9874
992/1875 [==============>...............] - ETA: 21s - loss: 0.0407 - accuracy: 0.9873
995/1875 [==============>...............] - ETA: 21s - loss: 0.0406 - accuracy: 0.9873
999/1875 [==============>...............] - ETA: 21s - loss: 0.0405 - accuracy: 0.9874
1003/1875 [===============>..............] - ETA: 20s - loss: 0.0407 - accuracy: 0.9873
1007/1875 [===============>..............] - ETA: 20s - loss: 0.0406 - accuracy: 0.9873
1010/1875 [===============>..............] - ETA: 20s - loss: 0.0406 - accuracy: 0.9873
1014/1875 [===============>..............] - ETA: 20s - loss: 0.0406 - accuracy: 0.9873
1018/1875 [===============>..............] - ETA: 20s - loss: 0.0406 - accuracy: 0.9873
1022/1875 [===============>..............] - ETA: 20s - loss: 0.0408 - accuracy: 0.9873
1025/1875 [===============>..............] - ETA: 20s - loss: 0.0409 - accuracy: 0.9873
1029/1875 [===============>..............] - ETA: 20s - loss: 0.0409 - accuracy: 0.9872
1033/1875 [===============>..............] - ETA: 19s - loss: 0.0408 - accuracy: 0.9873
1037/1875 [===============>..............] - ETA: 19s - loss: 0.0407 - accuracy: 0.9873
1039/1875 [===============>..............] - ETA: 19s - loss: 0.0407 - accuracy: 0.9873
1043/1875 [===============>..............] - ETA: 19s - loss: 0.0410 - accuracy: 0.9872
1047/1875 [===============>..............] - ETA: 19s - loss: 0.0410 - accuracy: 0.9873
1050/1875 [===============>..............] - ETA: 19s - loss: 0.0409 - accuracy: 0.9873
1054/1875 [===============>..............] - ETA: 19s - loss: 0.0410 - accuracy: 0.9873
1058/1875 [===============>..............] - ETA: 19s - loss: 0.0411 - accuracy: 0.9873
1062/1875 [===============>..............] - ETA: 19s - loss: 0.0410 - accuracy: 0.9873
1065/1875 [================>.............] - ETA: 19s - loss: 0.0410 - accuracy: 0.9873
1069/1875 [================>.............] - ETA: 18s - loss: 0.0410 - accuracy: 0.9873
1073/1875 [================>.............] - ETA: 18s - loss: 0.0410 - accuracy: 0.9873
1077/1875 [================>.............] - ETA: 18s - loss: 0.0410 - accuracy: 0.9873
1080/1875 [================>.............] - ETA: 18s - loss: 0.0410 - accuracy: 0.9873
1084/1875 [================>.............] - ETA: 18s - loss: 0.0411 - accuracy: 0.9872
1088/1875 [================>.............] - ETA: 18s - loss: 0.0410 - accuracy: 0.9872
1092/1875 [================>.............] - ETA: 18s - loss: 0.0409 - accuracy: 0.9873
1095/1875 [================>.............] - ETA: 18s - loss: 0.0408 - accuracy: 0.9873
1099/1875 [================>.............] - ETA: 18s - loss: 0.0408 - accuracy: 0.9873
1103/1875 [================>.............] - ETA: 17s - loss: 0.0407 - accuracy: 0.9874
1107/1875 [================>.............] - ETA: 17s - loss: 0.0408 - accuracy: 0.9873
1111/1875 [================>.............] - ETA: 17s - loss: 0.0411 - accuracy: 0.9873
1115/1875 [================>.............] - ETA: 17s - loss: 0.0413 - accuracy: 0.9873
1119/1875 [================>.............] - ETA: 17s - loss: 0.0412 - accuracy: 0.9873
1122/1875 [================>.............] - ETA: 17s - loss: 0.0411 - accuracy: 0.9873
1126/1875 [=================>............] - ETA: 17s - loss: 0.0412 - accuracy: 0.9873
1130/1875 [=================>............] - ETA: 17s - loss: 0.0411 - accuracy: 0.9873
1134/1875 [=================>............] - ETA: 17s - loss: 0.0410 - accuracy: 0.9874
1138/1875 [=================>............] - ETA: 16s - loss: 0.0410 - accuracy: 0.9874
1142/1875 [=================>............] - ETA: 16s - loss: 0.0409 - accuracy: 0.9874
1146/1875 [=================>............] - ETA: 16s - loss: 0.0409 - accuracy: 0.9874
1149/1875 [=================>............] - ETA: 16s - loss: 0.0408 - accuracy: 0.9874
1154/1875 [=================>............] - ETA: 16s - loss: 0.0407 - accuracy: 0.9875
1158/1875 [=================>............] - ETA: 16s - loss: 0.0410 - accuracy: 0.9875
1162/1875 [=================>............] - ETA: 16s - loss: 0.0411 - accuracy: 0.9874
1164/1875 [=================>............] - ETA: 16s - loss: 0.0411 - accuracy: 0.9874
1168/1875 [=================>............] - ETA: 16s - loss: 0.0412 - accuracy: 0.9874
1172/1875 [=================>............] - ETA: 15s - loss: 0.0412 - accuracy: 0.9874
1176/1875 [=================>............] - ETA: 15s - loss: 0.0411 - accuracy: 0.9874
1180/1875 [=================>............] - ETA: 15s - loss: 0.0410 - accuracy: 0.9874
1184/1875 [=================>............] - ETA: 15s - loss: 0.0410 - accuracy: 0.9874
1188/1875 [==================>...........] - ETA: 15s - loss: 0.0409 - accuracy: 0.9874
1190/1875 [==================>...........] - ETA: 15s - loss: 0.0409 - accuracy: 0.9874
1194/1875 [==================>...........] - ETA: 15s - loss: 0.0409 - accuracy: 0.9874
1198/1875 [==================>...........] - ETA: 15s - loss: 0.0413 - accuracy: 0.9874
1202/1875 [==================>...........] - ETA: 15s - loss: 0.0418 - accuracy: 0.9874
1205/1875 [==================>...........] - ETA: 15s - loss: 0.0417 - accuracy: 0.9874
1209/1875 [==================>...........] - ETA: 14s - loss: 0.0418 - accuracy: 0.9874
1213/1875 [==================>...........] - ETA: 14s - loss: 0.0419 - accuracy: 0.9874
1217/1875 [==================>...........] - ETA: 14s - loss: 0.0419 - accuracy: 0.9874
1221/1875 [==================>...........] - ETA: 14s - loss: 0.0418 - accuracy: 0.9874
1225/1875 [==================>...........] - ETA: 14s - loss: 0.0420 - accuracy: 0.9874
1229/1875 [==================>...........] - ETA: 14s - loss: 0.0420 - accuracy: 0.9874
1232/1875 [==================>...........] - ETA: 14s - loss: 0.0420 - accuracy: 0.9874
1236/1875 [==================>...........] - ETA: 14s - loss: 0.0419 - accuracy: 0.9874
1240/1875 [==================>...........] - ETA: 14s - loss: 0.0420 - accuracy: 0.9873
1244/1875 [==================>...........] - ETA: 14s - loss: 0.0421 - accuracy: 0.9873
1247/1875 [==================>...........] - ETA: 13s - loss: 0.0422 - accuracy: 0.9873
1251/1875 [===================>..........] - ETA: 13s - loss: 0.0422 - accuracy: 0.9872
1255/1875 [===================>..........] - ETA: 13s - loss: 0.0422 - accuracy: 0.9873
1259/1875 [===================>..........] - ETA: 13s - loss: 0.0424 - accuracy: 0.9872
1261/1875 [===================>..........] - ETA: 13s - loss: 0.0424 - accuracy: 0.9872
1265/1875 [===================>..........] - ETA: 13s - loss: 0.0424 - accuracy: 0.9872
1269/1875 [===================>..........] - ETA: 13s - loss: 0.0423 - accuracy: 0.9872
1271/1875 [===================>..........] - ETA: 13s - loss: 0.0423 - accuracy: 0.9873
1276/1875 [===================>..........] - ETA: 13s - loss: 0.0425 - accuracy: 0.9872
1280/1875 [===================>..........] - ETA: 13s - loss: 0.0426 - accuracy: 0.9871
1285/1875 [===================>..........] - ETA: 13s - loss: 0.0425 - accuracy: 0.9872
1288/1875 [===================>..........] - ETA: 12s - loss: 0.0429 - accuracy: 0.9871
1292/1875 [===================>..........] - ETA: 12s - loss: 0.0429 - accuracy: 0.9870
1296/1875 [===================>..........] - ETA: 12s - loss: 0.0428 - accuracy: 0.9871
1299/1875 [===================>..........] - ETA: 12s - loss: 0.0428 - accuracy: 0.9871
1303/1875 [===================>..........] - ETA: 12s - loss: 0.0427 - accuracy: 0.9871
1307/1875 [===================>..........] - ETA: 12s - loss: 0.0426 - accuracy: 0.9872
1311/1875 [===================>..........] - ETA: 12s - loss: 0.0425 - accuracy: 0.9872
1314/1875 [====================>.........] - ETA: 12s - loss: 0.0426 - accuracy: 0.9872
1318/1875 [====================>.........] - ETA: 12s - loss: 0.0425 - accuracy: 0.9872
1322/1875 [====================>.........] - ETA: 12s - loss: 0.0428 - accuracy: 0.9872
1326/1875 [====================>.........] - ETA: 11s - loss: 0.0428 - accuracy: 0.9872
1329/1875 [====================>.........] - ETA: 11s - loss: 0.0428 - accuracy: 0.9872
1333/1875 [====================>.........] - ETA: 11s - loss: 0.0428 - accuracy: 0.9872
1337/1875 [====================>.........] - ETA: 11s - loss: 0.0428 - accuracy: 0.9872
1341/1875 [====================>.........] - ETA: 11s - loss: 0.0430 - accuracy: 0.9872
1344/1875 [====================>.........] - ETA: 11s - loss: 0.0430 - accuracy: 0.9872
1348/1875 [====================>.........] - ETA: 11s - loss: 0.0429 - accuracy: 0.9872
1352/1875 [====================>.........] - ETA: 11s - loss: 0.0428 - accuracy: 0.9872
1356/1875 [====================>.........] - ETA: 11s - loss: 0.0430 - accuracy: 0.9872
1360/1875 [====================>.........] - ETA: 11s - loss: 0.0429 - accuracy: 0.9872
1364/1875 [====================>.........] - ETA: 11s - loss: 0.0428 - accuracy: 0.9872
1368/1875 [====================>.........] - ETA: 10s - loss: 0.0427 - accuracy: 0.9872
1371/1875 [====================>.........] - ETA: 10s - loss: 0.0427 - accuracy: 0.9873
1375/1875 [=====================>........] - ETA: 10s - loss: 0.0426 - accuracy: 0.9873
1379/1875 [=====================>........] - ETA: 10s - loss: 0.0428 - accuracy: 0.9872
1383/1875 [=====================>........] - ETA: 10s - loss: 0.0428 - accuracy: 0.9873
1386/1875 [=====================>........] - ETA: 10s - loss: 0.0427 - accuracy: 0.9873
1390/1875 [=====================>........] - ETA: 10s - loss: 0.0428 - accuracy: 0.9873
1394/1875 [=====================>........] - ETA: 10s - loss: 0.0429 - accuracy: 0.9872
1398/1875 [=====================>........] - ETA: 10s - loss: 0.0429 - accuracy: 0.9872
1402/1875 [=====================>........] - ETA: 10s - loss: 0.0428 - accuracy: 0.9872
1406/1875 [=====================>........] - ETA: 10s - loss: 0.0428 - accuracy: 0.9872
1410/1875 [=====================>........] - ETA: 9s - loss: 0.0427 - accuracy: 0.9873
1413/1875 [=====================>........] - ETA: 9s - loss: 0.0426 - accuracy: 0.9873
1417/1875 [=====================>........] - ETA: 9s - loss: 0.0425 - accuracy: 0.9873
1421/1875 [=====================>........] - ETA: 9s - loss: 0.0424 - accuracy: 0.9873
1425/1875 [=====================>........] - ETA: 9s - loss: 0.0424 - accuracy: 0.9873
1429/1875 [=====================>........] - ETA: 9s - loss: 0.0425 - accuracy: 0.9873
1432/1875 [=====================>........] - ETA: 9s - loss: 0.0425 - accuracy: 0.9873
1436/1875 [=====================>........] - ETA: 9s - loss: 0.0425 - accuracy: 0.9873
1440/1875 [======================>.......] - ETA: 9s - loss: 0.0425 - accuracy: 0.9873
1444/1875 [======================>.......] - ETA: 9s - loss: 0.0425 - accuracy: 0.9873
1448/1875 [======================>.......] - ETA: 9s - loss: 0.0426 - accuracy: 0.9873
1449/1875 [======================>.......] - ETA: 9s - loss: 0.0426 - accuracy: 0.9873
1453/1875 [======================>.......] - ETA: 9s - loss: 0.0425 - accuracy: 0.9873
1457/1875 [======================>.......] - ETA: 9s - loss: 0.0424 - accuracy: 0.9873
1461/1875 [======================>.......] - ETA: 9s - loss: 0.0424 - accuracy: 0.9873
1465/1875 [======================>.......] - ETA: 8s - loss: 0.0424 - accuracy: 0.9873
1468/1875 [======================>.......] - ETA: 8s - loss: 0.0424 - accuracy: 0.9873
1472/1875 [======================>.......] - ETA: 8s - loss: 0.0423 - accuracy: 0.9873
1476/1875 [======================>.......] - ETA: 8s - loss: 0.0423 - accuracy: 0.9873
1480/1875 [======================>.......] - ETA: 8s - loss: 0.0422 - accuracy: 0.9874
1483/1875 [======================>.......] - ETA: 8s - loss: 0.0422 - accuracy: 0.9874
1487/1875 [======================>.......] - ETA: 8s - loss: 0.0422 - accuracy: 0.9874
1491/1875 [======================>.......] - ETA: 8s - loss: 0.0421 - accuracy: 0.9874
1495/1875 [======================>.......] - ETA: 8s - loss: 0.0420 - accuracy: 0.9874
1498/1875 [======================>.......] - ETA: 8s - loss: 0.0419 - accuracy: 0.9874
1502/1875 [=======================>......] - ETA: 8s - loss: 0.0419 - accuracy: 0.9874
1507/1875 [=======================>......] - ETA: 7s - loss: 0.0418 - accuracy: 0.9874
1509/1875 [=======================>......] - ETA: 7s - loss: 0.0419 - accuracy: 0.9874
1513/1875 [=======================>......] - ETA: 7s - loss: 0.0419 - accuracy: 0.9874
1517/1875 [=======================>......] - ETA: 7s - loss: 0.0418 - accuracy: 0.9875
1521/1875 [=======================>......] - ETA: 7s - loss: 0.0417 - accuracy: 0.9875
1524/1875 [=======================>......] - ETA: 7s - loss: 0.0417 - accuracy: 0.9875
1528/1875 [=======================>......] - ETA: 7s - loss: 0.0416 - accuracy: 0.9875
1532/1875 [=======================>......] - ETA: 7s - loss: 0.0417 - accuracy: 0.9875
1536/1875 [=======================>......] - ETA: 7s - loss: 0.0416 - accuracy: 0.9875
1539/1875 [=======================>......] - ETA: 7s - loss: 0.0416 - accuracy: 0.9875
1543/1875 [=======================>......] - ETA: 7s - loss: 0.0416 - accuracy: 0.9875
1547/1875 [=======================>......] - ETA: 7s - loss: 0.0416 - accuracy: 0.9875
1551/1875 [=======================>......] - ETA: 6s - loss: 0.0415 - accuracy: 0.9875
1554/1875 [=======================>......] - ETA: 6s - loss: 0.0415 - accuracy: 0.9875
1559/1875 [=======================>......] - ETA: 6s - loss: 0.0415 - accuracy: 0.9875
1563/1875 [========================>.....] - ETA: 6s - loss: 0.0414 - accuracy: 0.9875
1567/1875 [========================>.....] - ETA: 6s - loss: 0.0413 - accuracy: 0.9876
1572/1875 [========================>.....] - ETA: 6s - loss: 0.0413 - accuracy: 0.9876
1576/1875 [========================>.....] - ETA: 6s - loss: 0.0412 - accuracy: 0.9876
1580/1875 [========================>.....] - ETA: 6s - loss: 0.0411 - accuracy: 0.9876
1583/1875 [========================>.....] - ETA: 6s - loss: 0.0412 - accuracy: 0.9876
1587/1875 [========================>.....] - ETA: 6s - loss: 0.0414 - accuracy: 0.9875
1591/1875 [========================>.....] - ETA: 6s - loss: 0.0413 - accuracy: 0.9875
1595/1875 [========================>.....] - ETA: 5s - loss: 0.0415 - accuracy: 0.9874
1599/1875 [========================>.....] - ETA: 5s - loss: 0.0415 - accuracy: 0.9875
1603/1875 [========================>.....] - ETA: 5s - loss: 0.0414 - accuracy: 0.9874
1607/1875 [========================>.....] - ETA: 5s - loss: 0.0414 - accuracy: 0.9875
1610/1875 [========================>.....] - ETA: 5s - loss: 0.0414 - accuracy: 0.9875
1614/1875 [========================>.....] - ETA: 5s - loss: 0.0415 - accuracy: 0.9874
1618/1875 [========================>.....] - ETA: 5s - loss: 0.0414 - accuracy: 0.9874
1622/1875 [========================>.....] - ETA: 5s - loss: 0.0413 - accuracy: 0.9875
1625/1875 [=========================>....] - ETA: 5s - loss: 0.0413 - accuracy: 0.9875
1629/1875 [=========================>....] - ETA: 5s - loss: 0.0412 - accuracy: 0.9875
1633/1875 [=========================>....] - ETA: 5s - loss: 0.0413 - accuracy: 0.9875
1637/1875 [=========================>....] - ETA: 5s - loss: 0.0413 - accuracy: 0.9875
1640/1875 [=========================>....] - ETA: 4s - loss: 0.0413 - accuracy: 0.9875
1644/1875 [=========================>....] - ETA: 4s - loss: 0.0413 - accuracy: 0.9875
1648/1875 [=========================>....] - ETA: 4s - loss: 0.0412 - accuracy: 0.9875
1652/1875 [=========================>....] - ETA: 4s - loss: 0.0411 - accuracy: 0.9875
1656/1875 [=========================>....] - ETA: 4s - loss: 0.0411 - accuracy: 0.9875
1660/1875 [=========================>....] - ETA: 4s - loss: 0.0410 - accuracy: 0.9875
1664/1875 [=========================>....] - ETA: 4s - loss: 0.0410 - accuracy: 0.9876
1668/1875 [=========================>....] - ETA: 4s - loss: 0.0410 - accuracy: 0.9876
1672/1875 [=========================>....] - ETA: 4s - loss: 0.0410 - accuracy: 0.9876
1676/1875 [=========================>....] - ETA: 4s - loss: 0.0409 - accuracy: 0.9876
1680/1875 [=========================>....] - ETA: 4s - loss: 0.0409 - accuracy: 0.9876
1683/1875 [=========================>....] - ETA: 4s - loss: 0.0409 - accuracy: 0.9876
1687/1875 [=========================>....] - ETA: 3s - loss: 0.0408 - accuracy: 0.9876
1691/1875 [==========================>...] - ETA: 3s - loss: 0.0408 - accuracy: 0.9876
1694/1875 [==========================>...] - ETA: 3s - loss: 0.0408 - accuracy: 0.9877
1698/1875 [==========================>...] - ETA: 3s - loss: 0.0407 - accuracy: 0.9877
1702/1875 [==========================>...] - ETA: 3s - loss: 0.0406 - accuracy: 0.9877
1706/1875 [==========================>...] - ETA: 3s - loss: 0.0405 - accuracy: 0.9877
1709/1875 [==========================>...] - ETA: 3s - loss: 0.0406 - accuracy: 0.9877
1713/1875 [==========================>...] - ETA: 3s - loss: 0.0405 - accuracy: 0.9877
1717/1875 [==========================>...] - ETA: 3s - loss: 0.0405 - accuracy: 0.9877
1721/1875 [==========================>...] - ETA: 3s - loss: 0.0406 - accuracy: 0.9877
1725/1875 [==========================>...] - ETA: 3s - loss: 0.0405 - accuracy: 0.9877
1729/1875 [==========================>...] - ETA: 3s - loss: 0.0406 - accuracy: 0.9877
1733/1875 [==========================>...] - ETA: 2s - loss: 0.0407 - accuracy: 0.9877
1736/1875 [==========================>...] - ETA: 2s - loss: 0.0407 - accuracy: 0.9877
1740/1875 [==========================>...] - ETA: 2s - loss: 0.0407 - accuracy: 0.9877
1744/1875 [==========================>...] - ETA: 2s - loss: 0.0407 - accuracy: 0.9877
1748/1875 [==========================>...] - ETA: 2s - loss: 0.0406 - accuracy: 0.9877
1751/1875 [===========================>..] - ETA: 2s - loss: 0.0406 - accuracy: 0.9877
1755/1875 [===========================>..] - ETA: 2s - loss: 0.0406 - accuracy: 0.9877
1759/1875 [===========================>..] - ETA: 2s - loss: 0.0406 - accuracy: 0.9877
1762/1875 [===========================>..] - ETA: 2s - loss: 0.0405 - accuracy: 0.9877
1766/1875 [===========================>..] - ETA: 2s - loss: 0.0405 - accuracy: 0.9877
1770/1875 [===========================>..] - ETA: 2s - loss: 0.0405 - accuracy: 0.9877
1774/1875 [===========================>..] - ETA: 2s - loss: 0.0405 - accuracy: 0.9878
1777/1875 [===========================>..] - ETA: 2s - loss: 0.0405 - accuracy: 0.9878
1781/1875 [===========================>..] - ETA: 1s - loss: 0.0406 - accuracy: 0.9877
1785/1875 [===========================>..] - ETA: 1s - loss: 0.0406 - accuracy: 0.9877
1789/1875 [===========================>..] - ETA: 1s - loss: 0.0405 - accuracy: 0.9877
1792/1875 [===========================>..] - ETA: 1s - loss: 0.0405 - accuracy: 0.9877
1796/1875 [===========================>..] - ETA: 1s - loss: 0.0404 - accuracy: 0.9878
1799/1875 [===========================>..] - ETA: 1s - loss: 0.0405 - accuracy: 0.9878
1803/1875 [===========================>..] - ETA: 1s - loss: 0.0404 - accuracy: 0.9878
1807/1875 [===========================>..] - ETA: 1s - loss: 0.0403 - accuracy: 0.9878
1811/1875 [===========================>..] - ETA: 1s - loss: 0.0404 - accuracy: 0.9878
1815/1875 [============================>.] - ETA: 1s - loss: 0.0403 - accuracy: 0.9878
1818/1875 [============================>.] - ETA: 1s - loss: 0.0403 - accuracy: 0.9878
1823/1875 [============================>.] - ETA: 1s - loss: 0.0402 - accuracy: 0.9878
1828/1875 [============================>.] - ETA: 0s - loss: 0.0401 - accuracy: 0.9878
1832/1875 [============================>.] - ETA: 0s - loss: 0.0401 - accuracy: 0.9878
1836/1875 [============================>.] - ETA: 0s - loss: 0.0402 - accuracy: 0.9878
1840/1875 [============================>.] - ETA: 0s - loss: 0.0402 - accuracy: 0.9878
1844/1875 [============================>.] - ETA: 0s - loss: 0.0402 - accuracy: 0.9878
1846/1875 [============================>.] - ETA: 0s - loss: 0.0403 - accuracy: 0.9877
1850/1875 [============================>.] - ETA: 0s - loss: 0.0403 - accuracy: 0.9877
1854/1875 [============================>.] - ETA: 0s - loss: 0.0403 - accuracy: 0.9877
1858/1875 [============================>.] - ETA: 0s - loss: 0.0404 - accuracy: 0.9877
1861/1875 [============================>.] - ETA: 0s - loss: 0.0404 - accuracy: 0.9877
1866/1875 [============================>.] - ETA: 0s - loss: 0.0403 - accuracy: 0.9878
1870/1875 [============================>.] - ETA: 0s - loss: 0.0404 - accuracy: 0.9878
1874/1875 [============================>.] - ETA: 0s - loss: 0.0404 - accuracy: 0.9877
1875/1875 [==============================] - 42s 22ms/step - loss: 0.0404 - accuracy: 0.9877 - val_loss: 0.0239 - val_accuracy: 0.9934
# with CPU only: (tensorflow tries to use all cores available)
with tf.device("/cpu:0"):
= Sequential()
model
3, 3), activation=ac, input_shape=(28, 28, 1),padding='same'))
model.add(Conv2D(num_filter, (=-1))
model.add(BatchNormalization(axis3, 3), activation=ac,padding='same'))
model.add(Conv2D(num_filter, (=-1))
model.add(BatchNormalization(axis=(2, 2))) # reduces to 14x14x32
model.add(MaxPooling2D(pool_size
2*num_filter, (3, 3), activation=ac,padding='same'))
model.add(Conv2D(=-1))
model.add(BatchNormalization(axis2*num_filter, (3, 3), activation=ac,padding='same'))
model.add(Conv2D(=-1))
model.add(BatchNormalization(axis=(2, 2))) # reduces to 7x7x64 = 3136 neurons
model.add(MaxPooling2D(pool_size
model.add(Flatten()) =ac))
model.add(Dense(num_dense, activation
model.add(BatchNormalization())
model.add(Dropout(drop_dense))10, activation='softmax'))
model.add(Dense(
=Adam(learning_rate=learningrate, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
admcompile(loss='categorical_crossentropy', metrics=['accuracy'],optimizer=adm)
model.
with tf.device("/cpu:0"):
for i in range(1):
=8*2**i
kprint("batch size "+str(k))
=k, epochs=1, validation_data=(x_test, y_test)) model.fit(x_train, y_train, batch_size
...
batch size 512
1/118 [..............................] - ETA: 2:16 - loss: 0.0022 - accuracy: 1.0000
2/118 [..............................] - ETA: 2:24 - loss: 0.0080 - accuracy: 0.9980
3/118 [..............................] - ETA: 2:15 - loss: 0.0118 - accuracy: 0.9967
4/118 [>.............................] - ETA: 2:15 - loss: 0.0094 - accuracy: 0.9976
5/118 [>.............................] - ETA: 2:13 - loss: 0.0112 - accuracy: 0.9969
6/118 [>.............................] - ETA: 2:12 - loss: 0.0105 - accuracy: 0.9967
7/118 [>.............................] - ETA: 2:11 - loss: 0.0129 - accuracy: 0.9955
8/118 [=>............................] - ETA: 2:09 - loss: 0.0122 - accuracy: 0.9958
9/118 [=>............................] - ETA: 2:08 - loss: 0.0114 - accuracy: 0.9961
10/118 [=>............................] - ETA: 2:06 - loss: 0.0116 - accuracy: 0.9961
11/118 [=>............................] - ETA: 2:05 - loss: 0.0124 - accuracy: 0.9959
12/118 [==>...........................] - ETA: 2:03 - loss: 0.0117 - accuracy: 0.9963
13/118 [==>...........................] - ETA: 2:02 - loss: 0.0122 - accuracy: 0.9959
14/118 [==>...........................] - ETA: 2:01 - loss: 0.0116 - accuracy: 0.9962
15/118 [==>...........................] - ETA: 2:00 - loss: 0.0111 - accuracy: 0.9964
16/118 [===>..........................] - ETA: 2:01 - loss: 0.0108 - accuracy: 0.9965
17/118 [===>..........................] - ETA: 2:00 - loss: 0.0106 - accuracy: 0.9966
18/118 [===>..........................] - ETA: 1:59 - loss: 0.0108 - accuracy: 0.9965
19/118 [===>..........................] - ETA: 1:58 - loss: 0.0105 - accuracy: 0.9966
20/118 [====>.........................] - ETA: 1:57 - loss: 0.0103 - accuracy: 0.9966
21/118 [====>.........................] - ETA: 1:55 - loss: 0.0099 - accuracy: 0.9967
22/118 [====>.........................] - ETA: 1:54 - loss: 0.0097 - accuracy: 0.9968
23/118 [====>.........................] - ETA: 1:53 - loss: 0.0096 - accuracy: 0.9969
24/118 [=====>........................] - ETA: 1:52 - loss: 0.0097 - accuracy: 0.9967
25/118 [=====>........................] - ETA: 1:51 - loss: 0.0099 - accuracy: 0.9966
26/118 [=====>........................] - ETA: 1:51 - loss: 0.0109 - accuracy: 0.9966
27/118 [=====>........................] - ETA: 1:49 - loss: 0.0108 - accuracy: 0.9966
28/118 [======>.......................] - ETA: 1:48 - loss: 0.0104 - accuracy: 0.9967
29/118 [======>.......................] - ETA: 1:47 - loss: 0.0107 - accuracy: 0.9966
30/118 [======>.......................] - ETA: 1:46 - loss: 0.0105 - accuracy: 0.9966
31/118 [======>.......................] - ETA: 1:45 - loss: 0.0106 - accuracy: 0.9966
32/118 [=======>......................] - ETA: 1:43 - loss: 0.0107 - accuracy: 0.9966
33/118 [=======>......................] - ETA: 1:42 - loss: 0.0108 - accuracy: 0.9966
34/118 [=======>......................] - ETA: 1:41 - loss: 0.0106 - accuracy: 0.9967
35/118 [=======>......................] - ETA: 1:40 - loss: 0.0110 - accuracy: 0.9964
36/118 [========>.....................] - ETA: 1:39 - loss: 0.0110 - accuracy: 0.9964
37/118 [========>.....................] - ETA: 1:37 - loss: 0.0108 - accuracy: 0.9965
38/118 [========>.....................] - ETA: 1:36 - loss: 0.0105 - accuracy: 0.9966
39/118 [========>.....................] - ETA: 1:35 - loss: 0.0104 - accuracy: 0.9967
40/118 [=========>....................] - ETA: 1:34 - loss: 0.0105 - accuracy: 0.9967
41/118 [=========>....................] - ETA: 1:32 - loss: 0.0103 - accuracy: 0.9968
42/118 [=========>....................] - ETA: 1:31 - loss: 0.0104 - accuracy: 0.9968
43/118 [=========>....................] - ETA: 1:30 - loss: 0.0102 - accuracy: 0.9968
44/118 [==========>...................] - ETA: 1:29 - loss: 0.0102 - accuracy: 0.9968
45/118 [==========>...................] - ETA: 1:28 - loss: 0.0101 - accuracy: 0.9969
46/118 [==========>...................] - ETA: 1:27 - loss: 0.0099 - accuracy: 0.9969
47/118 [==========>...................] - ETA: 1:26 - loss: 0.0099 - accuracy: 0.9969
48/118 [===========>..................] - ETA: 1:24 - loss: 0.0101 - accuracy: 0.9969
49/118 [===========>..................] - ETA: 1:23 - loss: 0.0099 - accuracy: 0.9969
50/118 [===========>..................] - ETA: 1:22 - loss: 0.0101 - accuracy: 0.9967
51/118 [===========>..................] - ETA: 1:21 - loss: 0.0102 - accuracy: 0.9966
52/118 [============>.................] - ETA: 1:19 - loss: 0.0101 - accuracy: 0.9967
53/118 [============>.................] - ETA: 1:18 - loss: 0.0101 - accuracy: 0.9967
54/118 [============>.................] - ETA: 1:17 - loss: 0.0101 - accuracy: 0.9967
55/118 [============>.................] - ETA: 1:16 - loss: 0.0102 - accuracy: 0.9967
56/118 [=============>................] - ETA: 1:15 - loss: 0.0101 - accuracy: 0.9967
57/118 [=============>................] - ETA: 1:13 - loss: 0.0100 - accuracy: 0.9967
58/118 [=============>................] - ETA: 1:12 - loss: 0.0100 - accuracy: 0.9968
59/118 [==============>...............] - ETA: 1:11 - loss: 0.0099 - accuracy: 0.9968
60/118 [==============>...............] - ETA: 1:10 - loss: 0.0099 - accuracy: 0.9968
61/118 [==============>...............] - ETA: 1:08 - loss: 0.0100 - accuracy: 0.9967
62/118 [==============>...............] - ETA: 1:07 - loss: 0.0099 - accuracy: 0.9968
63/118 [===============>..............] - ETA: 1:06 - loss: 0.0099 - accuracy: 0.9967
64/118 [===============>..............] - ETA: 1:05 - loss: 0.0101 - accuracy: 0.9967
65/118 [===============>..............] - ETA: 1:04 - loss: 0.0100 - accuracy: 0.9968
66/118 [===============>..............] - ETA: 1:02 - loss: 0.0099 - accuracy: 0.9967
67/118 [================>.............] - ETA: 1:01 - loss: 0.0098 - accuracy: 0.9968
68/118 [================>.............] - ETA: 1:00 - loss: 0.0099 - accuracy: 0.9968
69/118 [================>.............] - ETA: 59s - loss: 0.0098 - accuracy: 0.9968
70/118 [================>.............] - ETA: 58s - loss: 0.0097 - accuracy: 0.9968
71/118 [=================>............] - ETA: 57s - loss: 0.0096 - accuracy: 0.9968
72/118 [=================>............] - ETA: 55s - loss: 0.0095 - accuracy: 0.9969
73/118 [=================>............] - ETA: 54s - loss: 0.0095 - accuracy: 0.9969
74/118 [=================>............] - ETA: 53s - loss: 0.0095 - accuracy: 0.9969
75/118 [==================>...........] - ETA: 52s - loss: 0.0095 - accuracy: 0.9968
76/118 [==================>...........] - ETA: 50s - loss: 0.0096 - accuracy: 0.9969
77/118 [==================>...........] - ETA: 49s - loss: 0.0096 - accuracy: 0.9969
78/118 [==================>...........] - ETA: 48s - loss: 0.0095 - accuracy: 0.9969
79/118 [===================>..........] - ETA: 47s - loss: 0.0094 - accuracy: 0.9969
80/118 [===================>..........] - ETA: 46s - loss: 0.0094 - accuracy: 0.9969
81/118 [===================>..........] - ETA: 45s - loss: 0.0093 - accuracy: 0.9969
82/118 [===================>..........] - ETA: 43s - loss: 0.0093 - accuracy: 0.9970
83/118 [====================>.........] - ETA: 42s - loss: 0.0093 - accuracy: 0.9969
84/118 [====================>.........] - ETA: 41s - loss: 0.0093 - accuracy: 0.9970
85/118 [====================>.........] - ETA: 40s - loss: 0.0093 - accuracy: 0.9969
86/118 [====================>.........] - ETA: 38s - loss: 0.0093 - accuracy: 0.9969
87/118 [=====================>........] - ETA: 37s - loss: 0.0092 - accuracy: 0.9970
88/118 [=====================>........] - ETA: 36s - loss: 0.0092 - accuracy: 0.9970
89/118 [=====================>........] - ETA: 35s - loss: 0.0091 - accuracy: 0.9970
90/118 [=====================>........] - ETA: 34s - loss: 0.0093 - accuracy: 0.9970
91/118 [======================>.......] - ETA: 32s - loss: 0.0095 - accuracy: 0.9969
92/118 [======================>.......] - ETA: 31s - loss: 0.0094 - accuracy: 0.9969
93/118 [======================>.......] - ETA: 30s - loss: 0.0094 - accuracy: 0.9970
94/118 [======================>.......] - ETA: 29s - loss: 0.0093 - accuracy: 0.9970
95/118 [=======================>......] - ETA: 28s - loss: 0.0093 - accuracy: 0.9970
96/118 [=======================>......] - ETA: 26s - loss: 0.0092 - accuracy: 0.9970
97/118 [=======================>......] - ETA: 25s - loss: 0.0092 - accuracy: 0.9970
98/118 [=======================>......] - ETA: 24s - loss: 0.0092 - accuracy: 0.9970
99/118 [========================>.....] - ETA: 23s - loss: 0.0091 - accuracy: 0.9970
100/118 [========================>.....] - ETA: 21s - loss: 0.0091 - accuracy: 0.9971
101/118 [========================>.....] - ETA: 20s - loss: 0.0090 - accuracy: 0.9971
102/118 [========================>.....] - ETA: 19s - loss: 0.0091 - accuracy: 0.9971
103/118 [=========================>....] - ETA: 18s - loss: 0.0091 - accuracy: 0.9971
104/118 [=========================>....] - ETA: 17s - loss: 0.0092 - accuracy: 0.9970
105/118 [=========================>....] - ETA: 15s - loss: 0.0091 - accuracy: 0.9971
106/118 [=========================>....] - ETA: 14s - loss: 0.0092 - accuracy: 0.9971
107/118 [==========================>...] - ETA: 13s - loss: 0.0091 - accuracy: 0.9971
108/118 [==========================>...] - ETA: 12s - loss: 0.0091 - accuracy: 0.9971
109/118 [==========================>...] - ETA: 10s - loss: 0.0090 - accuracy: 0.9971
110/118 [==========================>...] - ETA: 9s - loss: 0.0091 - accuracy: 0.9971
111/118 [===========================>..] - ETA: 8s - loss: 0.0090 - accuracy: 0.9971
112/118 [===========================>..] - ETA: 7s - loss: 0.0091 - accuracy: 0.9971
113/118 [===========================>..] - ETA: 6s - loss: 0.0091 - accuracy: 0.9971
114/118 [===========================>..] - ETA: 4s - loss: 0.0090 - accuracy: 0.9971
115/118 [============================>.] - ETA: 3s - loss: 0.0090 - accuracy: 0.9971
116/118 [============================>.] - ETA: 2s - loss: 0.0090 - accuracy: 0.9971
117/118 [============================>.] - ETA: 1s - loss: 0.0090 - accuracy: 0.9971
118/118 [==============================] - ETA: 0s - loss: 0.0091 - accuracy: 0.9971
118/118 [==============================] - 147s 1s/step - loss: 0.0091 - accuracy: 0.9971 - val_loss: 0.0149 - val_accuracy: 0.9944
<keras.callbacks.History object at 0x000001535024DD30>